Estimation of Absolute Free Energies of Hydration Using Continuum Methods:  Accuracy of Partial Charge Models and Optimization of Nonpolar Contributions.

نویسندگان

  • Robert C Rizzo
  • Tiba Aynechi
  • David A Case
  • Irwin D Kuntz
چکیده

Absolute free energies of hydration (ΔGhyd) for more than 500 neutral and charged compounds have been computed, using Poisson-Boltzmann (PB) and Generalized Born (GB) continuum methods plus a solvent-accessible surface area (SA) term, to evaluate the accuracy of eight simple point-charge models used in molecular modeling. The goal is to develop improved procedures and protocols for protein-ligand binding calculations and virtual screening (docking). The best overall PBSA and GBSA results, in comparison with experimental ΔGhyd values for small molecules, were obtained using MSK, RESP, or ChelpG charges obtained from ab initio calculations using 6-31G* wave functions. Correlations using semiempirical (AM1BCC, AM1CM2, and PM3CM2) or empirical (Gasteiger-Marsili and MMFF94) methods yielded mixed results, particularly for charged compounds. For neutral compounds, the AM1BCC method yielded the best agreement with experimental results. In all cases, the PBSA and GBSA results are highly correlated (overall r(2) = 0.94), which highlights the fact that various partial charge models influence the final results much more than which continuum method is used to compute hydration free energies. Overall improved agreement with experimental results was demonstrated using atom-based constants in place of a single surface area term. Sets of optimized SA constants, suitable for use with a given charge model, were derived by fitting to the difference in experimental free energies and polar continuum results. The use of optimized atom-based SA constants for the computation of ΔGhyd can fine-tune already reasonable agreement with experimental results, ameliorate gross deficiencies in any particular charge model, account for nonoptimal radii, or correct for systematic errors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the transferability of hydration-parametrized continuum electrostatics models to solvated binding calculations

Using molecular mechanics force field partial atomic charges, we show the nonuniqueness of the parametrization of continuum electrostatics models with respect to solute atomic radii and interior dielectric constant based on hydration (vacuum-to-water transfer) free energy data available for small molecules. Moreover, parameter sets that are optimal and equivalent for hydration free energy calcu...

متن کامل

Surveying implicit solvent models for estimating small molecule absolute hydration free energies

Implicit solvent models are powerful tools in accounting for the aqueous environment at a fraction of the computational expense of explicit solvent representations. Here, we compare the ability of common implicit solvent models (TC, OBC, OBC2, GBMV, GBMV2, GBSW, GBSW/MS, GBSW/MS2 and FACTS) to reproduce experimental absolute hydration free energies for a series of 499 small neutral molecules th...

متن کامل

Accurate predictions of nonpolar solvation free energies require explicit consideration of binding-site hydration.

Continuum solvation methods are frequently used to increase the efficiency of computational methods to estimate free energies. In this paper, we have evaluated how well such methods estimate the nonpolar solvation free-energy change when a ligand binds to a protein. Three different continuum methods at various levels of approximation were considered, viz., the polarized continuum model (PCM), a...

متن کامل

On the nonpolar hydration free energy of proteins: surface area and continuum solvent models for the solute-solvent interaction energy.

Implicit solvent hydration free energy models are an important component of most modern computational methods aimed at protein structure prediction, binding affinity prediction, and modeling of conformational equilibria. The nonpolar component of the hydration free energy, consisting of a repulsive cavity term and an attractive van der Waals solute-solvent interaction term, is often modeled usi...

متن کامل

Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent.

In molecular simulations with fixed-charge force fields, the choice of partial atomic charges influences numerous computed physical properties, including binding free energies. Many molecular mechanics force fields specify how nonbonded parameters should be determined, but various choices are often available for how these charges are to be determined for arbitrary small molecules. Here, we comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of chemical theory and computation

دوره 2 1  شماره 

صفحات  -

تاریخ انتشار 2006